

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

Karen Janßen, Dr. Lena Vorspel (Fraunhofer IFAM)
Florian Koch, Markus Noga, Christoph Tries (Mainova AG)

Kommunale Wärmeplanung Frankfurt am Main Ergebnisse Potenzialanalyse

Ziel der Potenzialanalyse

Gemäß Leistungsverzeichnis

Ermittlung der Potenziale zur Energieeinsparung für Raumwärme, Warmwasser und Prozesswärme in den Sektoren Haushalte, Gewerbe-Handel-Dienstleistungen (GHD), Industrie und öffentliche Liegenschaften sowie Erhebung der lokal verfügbaren Potenziale erneuerbarer Energien, einschließlich Geothermie, Abwärme und Kraft-Wärme-Kopplung (KWK).

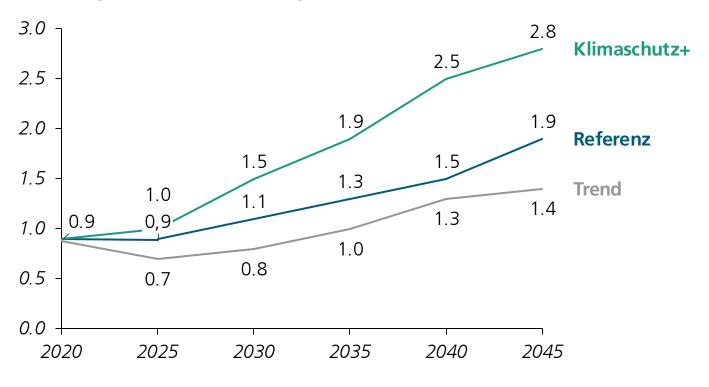
1: Energieeinsparung / Energieeffizienz

Wärmeverbrauchsreduktion in Gebäuden: Drei Szenarien

Energieeinsparung / Energieeffizienz

- Trend: Fortschreibung historischer Sanierungsaktivitäten, geringer Ambitionsgrad bei Steigerung.
- **Referenz:** Moderate Steigerung der Sanierungstätigkeit vor dem Hintergrund aktueller Ressourcenengpässe (Handwerker, Kapital).
- Klimaschutz+: Starke Intensivierung der Sanierungsanstrengungen; sehr ambitionierter Pfad, dennoch werden nicht alle Gebäude bis 2045 saniert
- Durchschnittliche Sanierungsraten 2025 bis 2045:

• Trend: 1,0 % Referenz: 1,3 % Klimaschutz+: 1,8 %


 Die durchschnittlichen Sanierungsraten liegen im gängigen Korridor von 1,0 bis 2,0 Prozent (vgl. Langfristszenarien T45 des BMWK^a), Pfadoptionen zur Dekarbonisierung von Fraunhofer^{b)}).

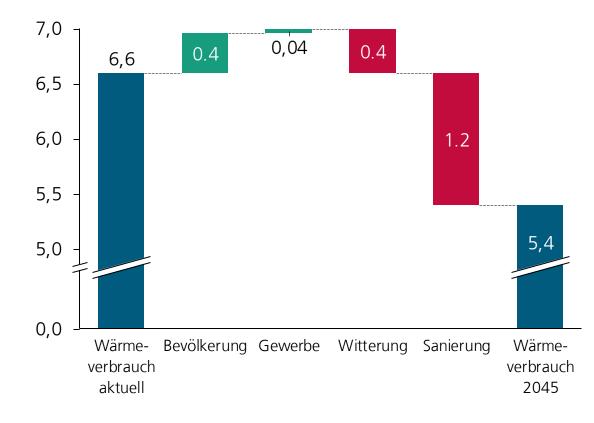
Wärmeverbrauchsreduktion in Gebäuden: Sanierungsraten

Energieeinsparung / Energieeffizienz

Sanierungsrate für Vollsanierungsäquivalente (KfW 55-Standard), in %

- Zur Vergleichbarkeit wird die Sanierungsrate für Vollsanierungsäquivalente (Sanierung auf KfW 55-Standard) angegeben.
- Für Frankfurt entspricht dies einer Sanierungstiefe von ca. 70 % (Durchschnitt unsanierter Gebäudebestand ca. 132 kWh/(m²*a)).

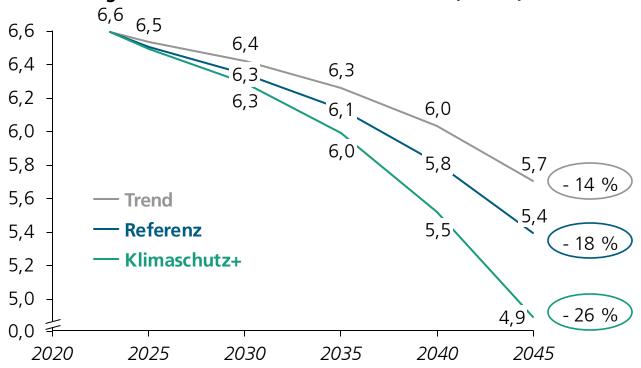
Wärmeverbrauchsreduktion in Gebäuden: Vier Parameter für Prognose


Energieeinsparung / Energieeffizienz

Prognose des Wärmeverbrauchs¹ durch vier Parameter:

- **Bevölkerung²:** Zunahme an Wohnflächen um ca. 5,5 %^{c)} (+ 0.4 TWh/a)
- Gewerbe- und Büroflächen²: Zunahme Gewerbeflächen um ca. $0.6 \%^{d}$ (+ 0.04 TWh/a)
- Klimaeffekt²: Lineare Abnahme der Gradtagszahlen bis zum Jahr 2045 um ca. 6 % (- 0,4 TWh/a)
- Sanierung: Abnahme des Wärmeverbrauchs durch Sanierung je nach Szenario (für Szenario Referenz: - 1,2 TWh/a)

Der Einfluss der Sanierung auf den Wärmeverbrauch ist im Vergleich zum Einfluss der Gradtagszahlen ca. dreimal so groß.



Wärmeverbrauchsreduktion in Gebäuden: Energieeinsparung

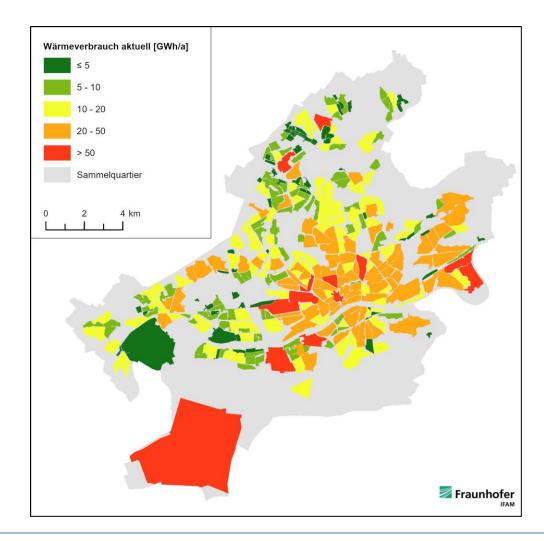
Energieeinsparung / Energieeffizienz

Entwicklung Wärmeverbrauch¹ Frankfurt am Main (TWh/a)

Reduktion Wärmeverbrauch¹ bis 2045:

Trend: - 14 %

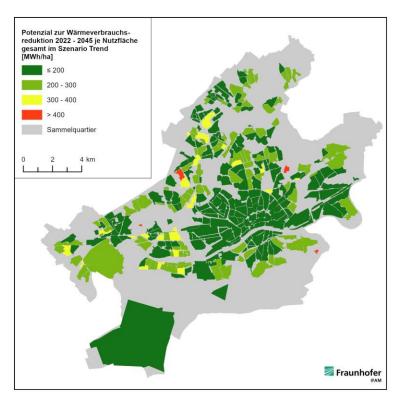
Referenz: - 18 %

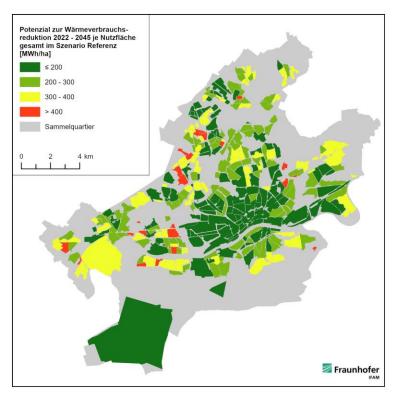

Klimaschutz+: - 26 %

Wärmeverbrauch¹ in Gebäuden

Energieeinsparung / Energieeffizienz

 Absoluter Wärmeverbrauch für Heizung und Warmwasser (in GWh/a) über das gesamte Stadtgebiet – als Ausgangsbasis zur Darstellung von Reduktionspotenzialen auf den folgenden Folien.

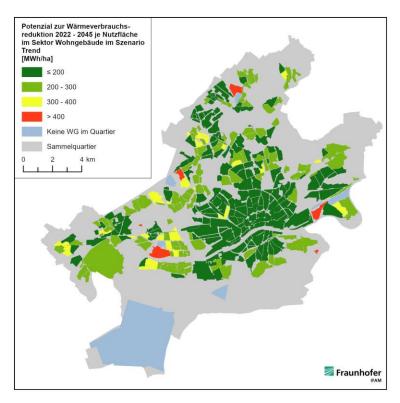


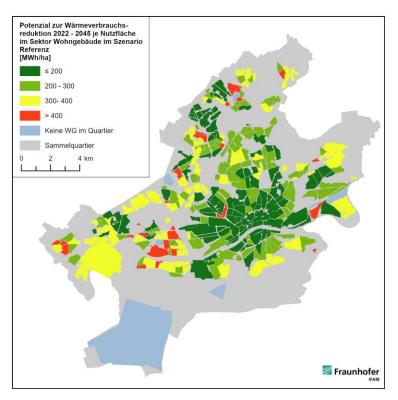

Potenziale zur Wärmeverbrauchsreduktion¹ bis 2045 (alle Gebäude)

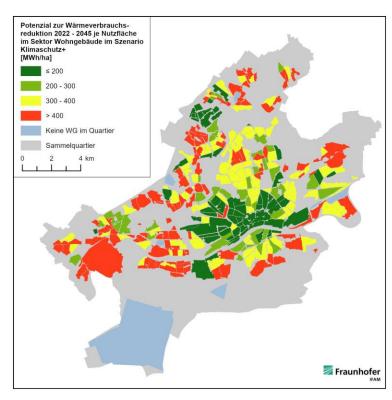

Energieeinsparung / Energieeffizienz

Szenario Trend

Szenario Referenz

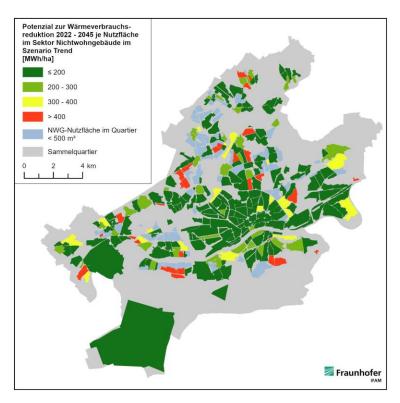

- Die größten Einsparpotenziale liegen in Stadtrandlagen; in der Innenstadt sind sie durch hohen Sanierungsstand und Denkmalschutz begrenzt.
- Je ambitionierter das Sanierungsszenario, desto größer sind die erzielbaren Einsparpotenziale.


Potenziale zur Wärmeverbrauchsreduktion¹ bis 2045 (Wohngebäude)

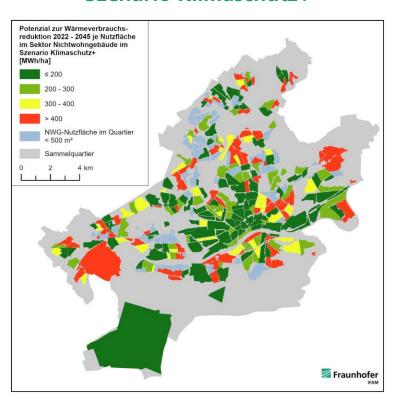

Energieeinsparung / Energieeffizienz

Szenario Trend

Szenario Referenz

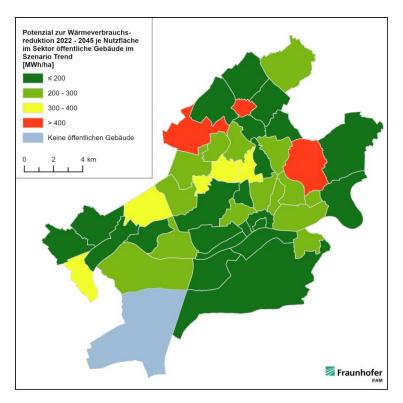

- Wohngebäude verursachen über die Hälfte des Wärmeverbrauchs (Heizung, Warmwasser) entsprechend hoch sind hier die Einsparpotenziale.
- Aus diesen Ergebnissen könnten besonders effiziente Sanierungsfokusgebiete in ausgewählten Stadtrandlagen abgeleitet werden.

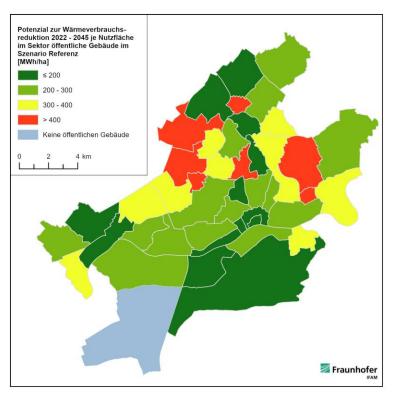

Potenziale zur Wärmeverbrauchsreduktion¹ bis 2045 (Nichtwohngebäude)

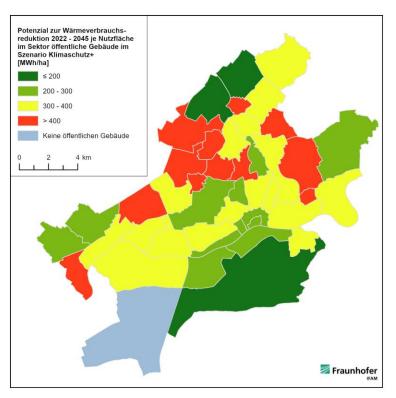

Energieeinsparung / Energieeffizienz

Szenario Trend

Szenario Referenz


- Ein Großteil der Nichtwohngebäude weist bereits einen guten Sanierungsstand und entsprechend geringes Einsparpotenzial auf.
- Einzelne Gebäude oder Quartiere mit besonders hohem Einsparpotenzial für den Wärmeverbrauch könnten jedoch gezielt adressiert werden.

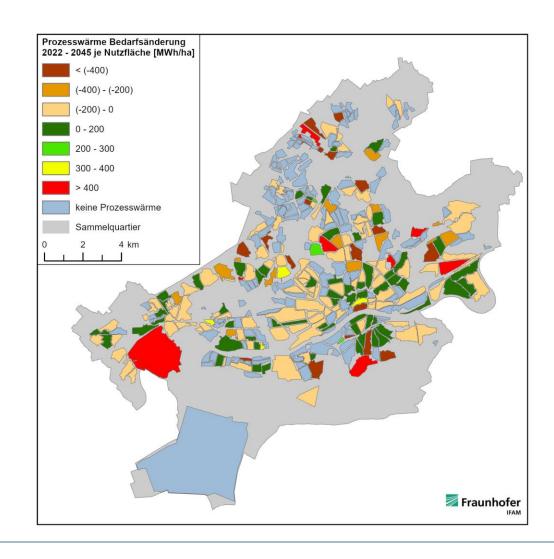

Potenziale zur Wärmeverbrauchsreduktion¹ bis 2045 (öffentliche Gebäude)


Energieeinsparung / Energieeffizienz

Szenario Trend

Szenario Referenz

- Da öffentliche Gebäude nicht in jedem Quartier oder nur vereinzelt vorhanden sind, erfolgt die Darstellung nach Stadtteilen.
- Einzelne Gebäude oder Stadtteile weisen besonders hohe Einsparpotenziale auf, die fokussiert adressiert werden könnten.

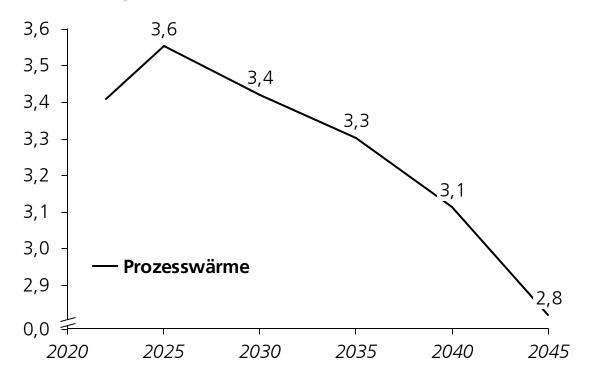


Wärmeverbrauchsreduktion¹ in Industrie und Gewerbe: Effizienzsteigerung

Energieeinsparung / Energieeffizienz

Prognose der Wärmeverbrauchsentwicklung für Prozesse:

- Prozesswärme-Prognose: Branchenspezifische Verbrauchsentwicklung entsprechend der T45-Langfristszenarien^{e)} des Bundes.
 - T45-Szenarien berücksichtigen Effizienzpotenziale der Prozesse, ggf. notwendige Prozessumstellung diverser Branchen, Auswirkungen eines moderaten Wirtschaftswachstums sowie Zukunftsaussichten der unterschiedlichen Branchen.
 - Branchenspezifische Prognose wird auf alle Betriebe der jeweiligen Branche im Stadtgebiet verteilt, Aussagen zur Entwicklung von Einzelstandorten innerhalb einer Branche können nicht getroffen werden.
- Prozesswärme-Verbrauch: Bestimmt durch Prozesstyp, Branche und deutschlandweite Entwicklung innerhalb der Langfristszenarien, lokale Szenariorahmendaten haben keinen Finfluss
- In einigen Fällen kann der Prozesswärmeverbrauch auch steigen (siehe negative) Wärmeverbrauchsreduktion in Abbildung anbei), wenn beispielsweise das Branchenwachstum größer ist als die prognostizierten Effizienzpotenziale.



Wärmeverbrauchsreduktion¹ in Industrie und Gewerbe: Energieeinsparung

Energieeinsparung / Energieeffizienz

Entwicklung der Prozesswärme (TWh/a)

Prognose der Wärmeverbrauchsentwicklung für Prozesse:

 Prozesswärme in Frankfurt: Stark geprägt durch die Chemieindustrie, mit Abstand folgen Ernährungsgewerbe und Maschinenbau.

