4: Potenziale zur Wärmespeicherung

Kurzzeitwärmespeicher

Potenziale zur Wärmespeicherung

Kurzzeitwärmespeicher:

- Zur Speicherung der Wärme über mehrere Stunden werden überwiegend Behälterspeicher eingesetzt (Speicherung von bis zu 50.000 m³ Wasser).
- Zur Minimierung der Wärmeverluste sind die Behälter von außen gedämmt, um Heißwasser mit Temperaturen von über 100 °C für die Einspeisung in das Fernwärmesystem vorzuhalten.
- Behälterspeicher benötigen deutlich weniger Fläche als saisonale Erdbeckenspeicher und sind daher auch im urbanen Raum realisierbar.

Mainova plant Kurzzeitwärmespeicher am HKW West:

- Über 60 Meter Höhe und 30 Meter Breite (> 35.000 m³ nutzbares Speichervolumen) sowie einer Speicherkapazität von ca. 1.750 MWh.ag)
- Der Speicher flexibilisiert die KWK-Wärmeerzeugung und stärkt das Fernwärmenetz durch zusätzliche Pufferleistung.
- Der Speicher entkoppelt Wärmeerzeugung und -bedarf zeitlich, ermöglicht eine stärkere Einbindung der Müllverbrennungsanlage und trägt zur CO₂-Reduktion sowie zur Erschließung neuer Kundenpotenziale bei.

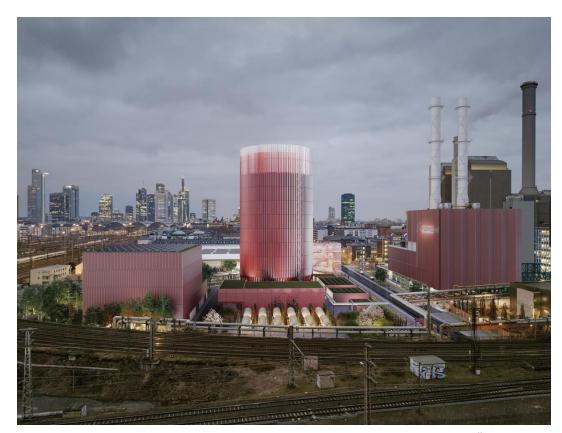


Abbildung: Geplanter Wärmespeicher am HKW West (Quelle für Bild: KÖLLING ARCHITEKTEN BDA)

Saisonale Wärmespeicher – Arten

Potenziale zur Wärmespeicherung

- Thermische Wärmespeicher unterscheiden sich nach Speicherdauer: Kurzzeitspeicher (z. B. Heizwasserbehälter am HKW West) puffern Wärme für Stunden oder Tage. Saisonale Speicher überbrücken sommerliche Überschüsse bei der Wärmeerzeugung bis zur Heizperiode.
- Die Wärme wird im saisonalen Speicher über mehrere Wochen oder sogar Monate bis zum Einsatz in der Heizperiode für das Fernwärmesystem gespeichert – abhängig vom Speichertyp ist eine Anhebung der Temperatur über Wärmepumpe notwendig
- Die Typen saisonaler Speicher sind in der Tabelle rechts dargestellt.

Technologie	Prinzip	Vorteile	Nachteile
ATES (Aquifer- speicher) Aquifer Thermal Energy Storage	Wärme wird in Grundwasserleitern gespeichert	Gute Energiedichte (hohe Temperaturen), effizient	Geologisch anspruchsvoll (Tiefen von min. 1.500 m), hohe Anforderungen für Genehmigung
BTES (Erdsonden) Borehole Thermal Energy Storage	Wärme wird über Bohrungen in den Boden gespeichert	Platzsparend, bewährt	Geringe Leistung (niedrige Temperaturen), träge Reaktion
PTES (Erdbecken- speicher) Pit Thermal Energy Storage	Großes Wasserbecken speichert Wärme	Hohe Kapazität, einfache Technik	Sehr großer Flächenbedarf
Sorptionsspeicher	Wärme wird chemisch gebunden (z.B. mit Zeolith)	Nahezu verlustfreie Langzeitspeicherung	Geringe Leistung, komplexe Technik

Saisonale Wärmespeicher – Bewertung

Potenziale zur Wärmespeicherung

Technische Analyse

- Nur ATES und PTES erreichen relevante Temperaturen über 85°C für die Fernwärmeversorgung.
- Aufgrund der geologischen Rahmenbedingungen wird für Frankfurt nur PTES betrachtet mit Vorteilen wie hoher Speicherkapazität, einfacher Bauweise und starker Ladeleistung.
- Konkrete Projektbeispiele (z. B. aus Dänemark und Schleswig-Holstein/Meldorf) liefern für die Bewertung konkrete Hinweise auf Dimensionierung und Kapazität.

Bewertungsannahmen:

- Fernwärmeerzeugung: 1.700 GWh/a (5-Jahres-Ø), davon 70 % in der Heizperiode (Okt.–März).
- Ziel: Speicherung von 10 % der Heizperiodenmenge ≈ 120.000 MWh.
- Flächenbedarf: ca. 360.000 m² (bei 3 m²/MWh¹), Volumen: ca. 3,5 Mio. m³

Potenzielle Standorte:

• Unbebaute Flächen dieser Größe im Fernwärmenetzgebiet finden sich nur im **Niddapark**, bei **Niederursel** und im **Stadtwald**. Die Flächenkonkurrenz zu Naherholungsgebieten ist dabei sehr hoch.

Bewertung: Ein Erdbeckenspeicher kann die Fernwärme sinnvoll ergänzen, ist aber wegen des hohen Flächenbedarfs im Frankfurter Stadtgebiet kaum umsetzbar. Eine Wirtschaftlichkeitsbewertung liegt bislang nicht vor.

© Fraunhofer IFAM | KWP Frankfurt am Main | Ergebnisse Potenzialanalyse

Abbildung:² Exemplarische Darstellung des Flächenbedarfs für saisonalen Speicher im Niddapark (Tiefe: 10 m).

